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Energy Bands in Body-Centered and Hexagonal Sodium* 
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The band structures of both the body-centered cubic and the hexagonal close-packed phases of sodium 
have been computed using a pseudopotential method. The pseudopotential parameters were obtained from 
spectroscopic data for the free sodium atom. The Fermi surface is nearly spherical in both phases, with the 
maximum distortion being of the order of i%. Within the accuracy of the calculation, the Fermi energy and 
effective mass are the same in the two phases. 

INTRODUCTION 

ALTHOUGH many energy-band calculations have 
been performed for sodium,1 comparison of cal

culated energy bands with experiment has been com
plicated by the low-temperature martensitic phase 
transformation. Samples at low temperatures contain 
both body-centered cubic and hexagonal close-packed 
phases. In order to study the effect of the presence of 
the hexagonal phase of sodium on experiments con
cerning the band structure, we have calculated energy 
bands for both the body-centered cubic and the 
hexagonal close-packed phases. A form of the pseudo-
potential method has been employed in which the 
parameters of the potential are determined from free-
atom spectroscopic data. Since the same pseudopoten
tial is used for both phases of sodium and since the 
calculations employ essentially the same number of 
plane waves for both phases, differences between the 
calculated energy bands in the two phases may be 
ascribed to the difference in crystal structure. 

We conclude that the energy-band structure for the 
two phases are essentially the same. Within the ac
curacy of the band calculations we have obtained the 
same effective mass and the same Fermi energy for 
both phases. A single effective mass is therefore to be 
expected from samples of sodium containing amounts 
of both crystal phases. 

Our procedures may be summarized briefly as follows. 
The wave function for each state is expanded in terms 
of symmetrized combinations of ordinary plane waves. 
A repulsive pseudopotential is used which incorporates 
the effects due to orthogonality of the valence electrons 
to the wave functions of the core electrons. The pa
rameters of the repulsive pseudopotential are deter
mined from spectroscopic data for the free atom. For 
the present problem which deals with the change in 
crystal structure between the two phases of sodium, 
the plane-wave method has the advantage that the 
potential can be evaluated in a manner consistent with 
the full symmetry of the crystal lattice more easily 
than in most other methods. In our calculations for 

* Supported by the U. S. Air Force Office of Scientific Research. 
f Present address: Research Laboratory, Philco Corporation, 

Newport Beach, California. 
1 Energy band calculations for the alkali metals have been 

reviewed by J. Callaway, Energy Band Theory (Academic Press 
Inc., New York, 1964), Chap. 3. 

the hexagonal phase, we have ignored the presence of 
stacking faults, and have employed the double-zone 
scheme. The use of the double-zone scheme should be 
appropriate either when spin-orbit effects are small or 
when magnetic breakdown has occurred. 

THE PSEUDOPOTENTIAL 

The present application of the pseudopotential method 
to determine an explicit potential suitable for energy-
band calculations is based upon arguments similar to 
those used in the development of the quantum defect 
method (QDM).2 These arguments have been presented 
in detail elsewhere.1-3 The basic assumption is that for 
the calculation of wave functions and valence-electron 
energies, we may take as our one-electron Hamiltonian 
an operator which near an ion in the solid is the same 
as in the free atom. The development of the QDM 
indicates that detailed information concerning the form 
of the potential inside the core region is not necessary 
in order to compute energy levels of valence electrons 
in the solid provided the potential is Coulombic near 
the cell boundary. In the region where the potential is 
Coulombic, the wave function is a linear combination 
of the regular and irregular solutions of the Coulomb 
wave equation. The ratio of the coefficients in this 
combination is a function of energy which can be 
determined for energies corresponding to eigenvalues 
of the free atom, and extrapolated to other energies. 
Once the ratio is known, the wave function on the cell 
boundary is determined to within a multiplicative 
factor, and consequently the energies at which the 
various states ypk satisfy the appropriate boundary con
ditions can be determined. 

For the present calculation we desire an explicit po
tential which meets the general requirements of the 
QDM and in addition incorporates the effects of orthog
onality so that ordinary plane waves can be used 
conveniently. For our potential we may therefore use 
any function which is Coulombic outside the core, 
reproduces the free-atom eigenvalues correctly, and 
therefore yields the correct logarithmic derivatives in 
the exterior region at these eigenvalues. A pseudo-
potential which meets these requirements is assumed 

2 F. S. Ham, in Solid State Physics, edited by F. Seitz and D. 
Turnbull (Academic Press, Inc., New York, 1955), Vol. 1, p. 127. 

3 J. Callaway, Phys. Rev. 112, 322 (1958). 
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to be a satisfactory potential for the energy-band cal
culation. In principle, the use of such a pseudopotential 
to yield a wave function with the desired logarithmic 
derivatives outside the core region does not introduce 
any approximations into the problem other than those 
connected with the general validity of the QDM. In 
practice, some additional approximations are intro
duced because the pseudopotential contains only a few 
parameters. 

For the pseudopotential we use a form introduced by 
Hellmann and Kassatotschkin4 and applied to sodium 
by Callaway3 

V(r) = -2/r+Qe-Br/r. (1) 

It is necessary that the parameter B be large enough 
so that a small core is simulated and so that there is 
a well-defined region in which the potential is Coulombic. 

It must be expected that different values for the 
parameters of the pseudopotential will be obtained 
depending on the states used to determine them. The 
effect of exchange can be considered to a good approxi
mation as giving rise to a different potential for states 
of different angular momentum.5 In some cases it might 
be desirable to determine a pseudopotential for each 
angular momentum. However, the difference of the 
effective exchange potential between the different 
angular-momentum states is likely to produce only 
a small effect in sodium as is evidenced by the success 
of Prokofjew in accounting for all the spectral levels 
on the basis of a single potential.6 We have therefore 
determined a single pseudopotential based on the 3s 
and 3p states. 

In order to determine the parameters of the pseudo-
potential, the following procedure was adopted. For 
the form of the pseudopotential we have used, the 
radial Schrodinger equation is given by 

(d*RL/dr*)+ZEn,L+2/r-Qe-Br/r 
-L(L+l )A 2 ] i ? L =0 , (2) 

where En,L is the experimental eigenvalue for the free-
atom state in question and Q and B are trial values of 
the pseudopotential parameters. For a particular state, 
say the 3s state, the radial equation is integrated nu
merically from the origin outward into the Coulombic 
region. For a value of r in the Coulombic region, the 
trial value of the logarithmic derivative is calculated. 
The values of the logarithmic derivatives so obtained 
were then compared with values of the derivatives 
required if RL is to be an eigenfunction. The parameters 
Q and B were varied until reasonable agreement was 
obtained. 

The values of the logarithmic derivatives of the 
free-atom eigenfunctions were determined from an a-

4 H. Hellmann and W. Kassatotschkin, J. Chem. Phys. 4, 324 
(1936). 

6 F. Herman, J. Callaway, and F. S. Acton, Phys. Rev. 95, 
371 (1954). 

6 W. Prokofjew, Z. Physik 58, 255 (1929). 

TABLE I. Four determinations of the pseudopotential 
parameters for the free atom. 

States 

3s-
4s-
3s-
4s-

-3p 
-4p 
-4p 
-3p 

Q 

20.3 
24.3 
13.6 
30.4 

B 

2.044 
2.12 
1.77 
2.26 

symptotic series for the wave function using the experi
mental eigenvalues. This series is described in Ref. 3. 
For each of the states 3s, 3p, 4s, and 4p, curves of the 
pairs of values Q and B which yield correct logarithmic 
derivatives were obtained. Each of these curves repre
sents the locus of points Q and B for which the correct 
logarithmic derivative is obtained. A potential may be 
determined from the intersection of any two of the 
potential curves. The (Q,B) region which was investi
gated by this method was 10<<2<45 and 1.5<J3<2.5. 
The intersections which were found are given in Table 
I. The intersection of the 3s and 3p potential curves 
determined the potential we believe appropriate for 
the energy-band problem. The values of the parameters 
Q and B were therefore taken to be Q==20.3 and B 
= 2.044. Using this pseudopotential, it was found that 
the 3s free-atom eigenvalue was reproduced correctly 
to within 1.2%, and the 3p eigenvalue was correctly 
reproduced to within 0.8%. 

Although the 3s—3p pseudopotential has been used 
in the energy-band calculation, the energy of the 
ground state Ti for the body-centered cubic lattice 
was calculated for the four different pseudopotentials 
we have obtained in order to determine the sensitivity 
of the Ti state to changes in the pseudopotential pa
rameters. The results obtained are given in Table II 
and are for an equivalent sphere radius of 3.96 a.u. 
(atomic units). The energy is given in rydbergs and 
the usual cellular zero of energy is taken. Apparently 
the energy of the state Ti is not very sensitive to the 
particular potential used as long as the derivatives are 
reproduced correctly. 

THE BAND-STRUCTURE CALCULATION 

The wave function for each of the two crystal 
structures is expanded in a linear combination of sym
metrized groups of plane waves chosen to belong to a 
particular representation of the group of the wave 

TABLE II. The energy of the ground state Ti for bcc sodium 
for four different free atom pseudopotentials. The s-curve po
tential given below is from an arbitrary point on the (Q,B) curve 
along which the 3s logarithmic derivative is correctly reproduced. 

Q B Pseudopotential E (rydbergs) 

28 2.26 s curve -0.6049 
24.3 2.12 4s-4p -0.5988 
20.3 2.044 3s-3p -0.6031 
13.6 1.77 3s-4p -0.5984 
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FIG. 1. The Brillouin zone and 
Fermi surface for (a) the close-
packed hexagonal and for (b) the 
body-centered cubic phases of 
sodium. 

(a) (b) 

vector. If i/V is the wave function for the ith irreducible 
representation of wave vector k, one has 

*k*= (1/O0)-1/2 E h 0k+h£ e x p [ t ( k + h ) . r ] . (3) 

The sum over h runs over all reciprocal lattice vectors 
for the lattice in question. For the present, we ignore 
the relations between the #k+h which are a consequence 
of symmetry. Oo is the volume of the cellular poly
hedron. The matrix elements of the Hamiltonian are 

( k + h | F | k + h , > = ( k + h ) a 5 h h , + F ( h - h O , (4) 

where the Fourier coefficients V(h—h') are given by 

F ( h - h ' ) = (1/%) ( e x p [ - ; ( h - h O - r ] F ( r ) J V . (5) 

For the body-centered cubic lattice the above integral 
is over the cellular polyhedron containing one atom 
while the hexagonal structure is taken over the double 
polyhedron centered about the two atoms of the basis. 
The crystal potential we have used in the band calcu
lation is that of Eq. (1) neutralized by a uniform 
distribution of negative charge within the cellular 
polyhedron. The Fourier coefficients V(h—h') were 
computed with the full symmetry of the cellular poly
hedron for the crystal structure in question. The de
termination of the Fourier coefficients of the potential 
is discussed at greater length in Appendix. 

In the case of the cubic phase of sodium we have 
used the lattice constant quoted by Barrett7 which is 
a=4.225 A at 5°K. The corresponding equivalent 
sphere radius is 3.931 a.u. Unless specified to the con
trary, results for the energy-band calculations refer 
to this sphere radius and pseudopotential parameters 
(3=20.3 and £ = 2.044. In order to investigate the 
dependence of the energies of the symmetry points T 
and N on these quantities, additional values of the 
sphere radius and pseudopotential parameters have 
been employed and are given where applicable. 

The calculation for the cubic phase involved solving 
secular determinants for between 273 and 295 plane 
waves depending on the representation. The order of 
secular determinant varied from 15 for the Ti state to 
90 for the Si representation. Energies were determined 
for the Ai, Ai, and Xi representations along the A, A, 
and 2J symmetry axes, and for the Ti, Ni, and AY 
representations at the symmetry points T and N. Only 
states of predominantly s and p symmetry were treated 
since for states of predominantly d (or higher I) sym
metry, the pseudopotential approach cannot be used 
because sodium lacks a core function of like symmetry. 
The Brillouin zone for the body-centered cubic lattice 
is given in Fig. 1 and the symmetry axes and points 
labeled. 

In order to determine the Fermi energy for the cubic 
phase the following procedure was adopted. We have 
from the definition of the density of states and the 
principles of Fermi statistics that 

fEf 

N/V= g(E)dE= (1/12TT3) / k*(EF,6,4>)<fo, (6) 

' C. S. Barrett, Acta Cryst. 9, 671 (1956). 

where N/V is the number of electrons/unit vol., g(E) 
is the density of states, EF is the Fermi energy, and k 
is the magnitude of the vector k for energy EF and 
direction specified by 6 and </>. The integral is over 
solid angle. This relation was used to determine the 
Fermi energy. In order to evaluate (6), we have ex
panded kz in terms of the Kubic harmonics8 using the 
calculated values of k versus E from the energy bands 
along the three symmetry axes. A least-squares pro
cedure was used to determine the coefficients. I t was 
found that an accurate representation for the calculated 
values of ¥ versus E could be obtained from this 
procedure. Because the Kubic harmonics are orthog
onal over the unit sphere, the only contribution to 
(6) comes from the spherically symmetric terms. 

8 F. C. Von der Lage and H. A. Bethe, Phys. Rev. 71, 612 
(1947). 
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The value obtained for the Fermi energy was then 
used to determine the values of the Fermi wave vector 
along the three symmetry axes by interpolation in the 
calculated energy-band data. In this manner an estimate 
of the distortion of the Fermi surface was obtained. 
Other methods could be used to determine the degree 
of anisotropy of the Fermi surface but for small dis
tortions the direct method seems the most appropriate. 

The effective mass was next determined from a 
similar expansion of the energy E(k) in terms of the 
Kubic harmonics according to the expression 

TABLE III. Energy eigenvalues for the Ai, Si and Ai 
representations for body-centered cubic sodium. 

w*= l/(E2+2Etkf
2+3E&k/), (7) 

where E2, E4, and EQ are the coefficients of the spherical 
terms in the expansion of E(k) versus k. Because the 
Fermi surface is nearly spherical, the determination of 
the effective mass in this approximation which ignores 
anisotropic terms should be very nearly correct. We 
estimate that use of the spherical approximation pro
duces an error of less than 0.01 in the effective mass. 

In the calculation of the energy-band structure for 
the hexagonal phase of sodium we have taken the 
atomic volume to be the same as for the cubic phase. 
The values of the cell parameters quoted by Barrett7 

indicate that the volume per atom may be 0.2% larger 
for the hexagonal phase than for the cubic phase; 
however, the differences lie within the experimental 
error in the determination of the lattice constants. 
To within the experimental error, the c/a ratio is equal 
to 1.633 so that ideal close packing has been assumed. 

The same pseudopotential has been employed and a 
sphere radius of 3.931 a.u. has been used. Energies are 
given in rydbergs and the same value of 7(0) is used 
except in comparing the Fermi energies for the two 
phases. For a comparison of the Fermi energies in the 
two phases, the shift in the average potential [which 
is V(0)2 within the cellular polyhedron is taken into 
account. The evaluation of V(0) for the two crystal 
structures is given in the Appendix. 

The Brillouin zone for the hexagonal structure is 
given in Fig. 1 and the symmetry axes and symmetry 
points labeled. In performing the calculations for the 
hexagonal phase we have ignored spin-orbit coupling. 
In this case the energy levels along the hexagonal 
face of the Brillouin zone containing the points AHL 
are all doubly degenerate so that no gap will exist 
across the hexagonal face. The double-zone scheme is 
therefore applicable and we may continue the Ai 
representation along the z axis through the first zone 
and into the second zone until the Fermi energy and 
Fermi surface are determined. Estimates9 of the gap 
splitting that would be expected from spin-orbit cou
pling are of the order of 10~3 eV so that neglect of 
spin-orbit coupling in this calculation is probably justi
fied. Even if the effect is not negligible, magnetic 
breakdown will occur for magnetic fields larger than 

(ka/27r) First eigenvalue 

Ai Representation bcc lattice 

0.10 
0.20 
0.30 
0.40 
0.475 

0.1732 
0.3464 
0.5196 
0.6928 
0.8227 

Si Representation bcc lattice 

0.10 
0.20 
0.30 
0.40 
0.475 

Ai Representation 

0.2 
0.4 
0.6 
0.8 
0.9 

0.1414 
0.2828 
0.4242 
0.5656 
0.6717 

bcc lattice 

0.2 
0.4 
0.6 
0.8 
0.9 

-0.5879 
-0.5329 
-0.4416 
-0.3151 
-0.2007 

-0.5940 
-0.5573 
-0.4963 
-0.4115 
-0.3343 

-0.5818 
-0.5084 
-0.3867 
-0.2179 
-0.1177 

9 L. M. Falicov and M. H. Cohen, Phys. Rev. 130, 92 (1963). 

about 30 Oe so that the "without spin-orbit" topology 
will be restored.10 

The energy-band calculation for the hexagonal phase 
employed a similar number of plane waves as was used 
for the cubic phase. The three symmetry axes J1, A, 
and S and the symmetry points T and M were treated. 
Energies for the Th Ah Si, S8, S4, Mi*-, Mr, I\+, r8+, 
and T4~ representations of predominantly s and p sym
metry were determined. 

The Fermi energy, degree of anisotropy of the Fermi 
surface, and the effective mass were determined in an 
analogous fashion to the procedure used for the cubic 
phase. Least-squares expansions were obtained using 
the hexagonal harmonics given by Bell11 rather than 
the Kubic harmonics used for the cubic phase. It was 
found that accurate expansions in terms of the hexag
onal harmonics were possible and the resulting band 
parameters such as the Fermi energy and the effective 
mass were found to change relatively little as the 
number of terms in the expansion was increased. 

RESULTS 

Table III contains the energies for states along the A, 
S, and A axes for the Ai, Si, and Ai representations, 
respectively. For the A axis, the coordinates of the 
k vector are given by k= (2T/O)(X,X,X) where 0<x<%. 
The endpoints of this axis are the symmetry points 
r and P. Along the S axis, the coordinates of the k 
vector are given by k= (2w/a)(x,xfi) where 0 < x < J . 
The endpoints of this axis are the points T and N. The 
coordinates of the k vector along the A axis are given 
by k= (2w/a) (#,0,0) where the 0< x < 1 and the end-
points are V and H. 

10 C. C. Grimes and A. F. Kip, Phys. Rev. 132, 1991 (1963). 
11 D. G. Bell, Rev. Mod. Phys. 26, 191 (1954). 
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TABLE IV. Energies for the Ti, Ni and Ni representations for 
the body-centered cubic sodium and the energy gap defined as 
JECiWJ-JSCtfi). 

Rs 

3.14511 
3.83310 
3.93139 
4.02967 
4.71767 

£ ( r i ) 

-0.6537 
-0.6140 
-0.6062 
-0.5983 
-0.5434 

E (iVi) 

-0.1185 
-0.2645 
-0.2758 
-0.2855 
-0.3256 

E (i\Y) 

-0.2335 
-0.3175 
-0.3223 
-0.3262 
-0.3339 

E (Gap) 

-0.1150 
-0.0530 
-0.0465 
-0.0407 
-0.0083 

Table IV contains the results for the Fi representa
tion and for the N\ and N\ representations. The energy 
gap at the point N defined as E(Ni)—E(N\) is also 
given. I t is seen that the states N\ and N\ lie close 
together over a wide range of lattice spacings. For a 
sphere radius of 3.931 a.u. we obtain a gap at the point 
N of —0.0465 Ry. We obtain a value of the Fermi 
energy of —0.3724 Ry for the cellular zero of energy.12 

The spherical effective mass is found to be 1.024, and 
the distortion of the Fermi surface corresponds to a 
variation of the Fermi wave vector of approximately 
0.2% with the bulge being in the direction of the point 
N. The results for the distortion of the Fermi surface 
and approach of the Fermi surface to the zone bounda
ries are contained in Table V. 

The interband edge for direct transitions is estimated 
from the separation of the first and second eigenvalues 
for the Si representation evaluated at the Fermi surface 

TABLE V. Distortion of the Fermi surface and approach of the 
Fermi vector to the zone boundaries for the body-centered cubic 
lattice. 

Axis 

A 
2 
A 

(ka/2ic)f 

0.6190 
0.6204 
0.6192 

Distortion 

«0.2%" 

End 
point 

H 
N 
P 

kf/kend point 
(%) 
62 
88 
72 

and is found to be approximately 2.18 eV. The energy 
difference between the Fermi energy and the lowest 
symmetry point in the second zone (Ni) is 1.31 eV. 
This probably corresponds to the edge for indirect 
optical transitions. The width of the occupied portion 
of the bands is 3.18 eV. 

Table VI contains the results for the 7 \ representa
tion. The magnitude of the k vector along the T axis 
is given by k= (2w/a)(2x/3) where 0 < # < 1 . The end-
points of this axis are the symmetry points F and K. 
Table VII contains the energies for the Ax representa
tion. This symmetry axis has as its endpoints the points 
r and A. The magnitude of the k vector along this 
axis is given by k= (2w/d)(ax/c) where 0<x<% defines 
that portion of the axis lying within the first Brillouin 

12 By "cellular zero" we mean that we have used 7(0) = — 3/Rs 
Jr<3Q/B2Rs^) which is a spherical average of the potential as 
given in Eq. (1). 

zone. The Fermi surface lies outside the first Brillouin 
zone so that x has been extended to the range 0<x< 1. 
The Fermi energy corresponds to a value of x approxi
mately equal to 0.9. Table VIII contains the results 
for the Si, S3, and S4 representations. The magnitude 
of the k vector lying along the S axis is given by 
k= (2T/O) (2x/V3) where 0 < # < i 

Table IX contains the results for the M{^ and M2~~ 
representations. Also given is the energy gap at the 
point M defined as E{M1

+)—E(M2~). The gap, when 
the standard sphere radius is used, is found to be 
— 0.0236 Ry and is approximately one-half the gap 
for the point N in the cubic phase. The gap remains 
small for a wide range of lattice spacings. Also in
cluded in Table IX are the results for the representa
tions at the T point. On comparing Table IX with 
Table IV we see that the energies of the ground state 

TABLE VI. Energies for the T\ representation 
of the hexagonal structure. 

Ti Representation hep lattice 
x ika/lir) First eigenvalue 

0.20 0.1333 -0.5922 
0.40 0.2667 -0.5511 
0.60 0.4000 -0.4828 
0.80 0.5333 -0.3877 
1.00 0.6667 -0.2674 

at r are very nearly equal for both phases over the 
range of lattice constants treated. 

From the expansion of ¥ in the hexagonal harmonics 
we obtain a value of the Fermi energy for the hexagonal 
phase of —0.3721 Ry using the cellular zero of energy. 
Table X contains the results for the distortion of the 
Fermi surface and the approach of the Fermi surface 
to the zone boundaries. A distortion of approximately 
0.22 to 0.29% is indicated. A slight increase in dis
tortion in the hexagonal phase results from the closer 
approach of the Fermi surface to the zone boundary 
more than making up for the somewhat decreased gap 
at the zone boundary. 

We obtain for the effective mass on the Fermi 
surface in the hexagonal phase a value of m*= 1.029. 
Figure 2 contains a plot of the calculated energy bands 
along the three symmetry axes. The symmetry points 
r , A, M, and K are indicated. 

TABLE VII. Energies for the Ai representations 
of the hexagonal structure. 

Ai Representation hep 
X 

0.20 
0.40 
0.60 
0.80 
1.00 

lattice 
ika/lir) 

0.1224 
0.2449 
0.3674 
0.4899 
0.6124 

First eigenvalue 

-0.5940 
-0.5594 
-0.5018 
-0.4217 
-0.3243 
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TABLE VIII. Energies for the Si, S3 and S4 representations 
for the hexagonal structure. 

(ka/2ir) First eigenvalue 

2i Representation hep lattice 
0.10 
0.20 
0.30 
0.40 
0.50 

0.1155 
0.2309 
0.3464 
0.4619 
0.5773 

S3 Representation hep lattice 
0.00 
0.10 
0.20 
0.30 
0.40 
0.50 

S4 Representation 
0.00 
0.10 
0.20 
0.30 
0.40 
0.50 

0.0000 
0.1155 
0.2309 
0.3464 
0.4619 
0.5773 

hep lattice 
0.0000 
0.1155 
0.2309 
0.3464 
0.4619 
0.5773 

-0.5954 
-0.5646 
-0.5134 
-0.4419 
-0.3516 

-0.3370 
-0.3266 
-0.2955 
-0.2435 
-0.1709 
-0.0786 

+0.4032 
-j-0.3100 
+0.2373 
+0.1854 
+0.1543 
+0.1439 

CONCLUSIONS AND COMPARISON WITH 
EXPERIMENT 

The Fermi energy for the cellular zero has been 
found to be -0 .3724 and -0 .3721 Ry for the cubic 
and hexagonal phases, respectively. Taking into ac
count the small shift in the average potential within 
the cellular polyhedron for the two different phases, 
the result for the hexagonal phase is lowered slightly 
to Ef~ —0.3723 Ry. If we neglect a possible change in 
the bandwidth resulting from a small increase in 
atomic volume (an 0.2% increase was suggested by 
Barrett), we obtain Fermi energies of —0.3724 and 
— 0.3723 Ry for the cubic and hexagonal phases, re-

TABLE IX. Energies for Mi+, Mr and the representations at r . 
The energy gap at the point M is defined as E(Mi+) —E(M2~). 

R. 

3.1415 
3.9314 
4.030 
4.717 

E(Mi+) 

- 0 . 2 8 6 2 
- 0 . 3 5 7 5 
- 0 . 3 6 0 0 
- 0 . 3 6 1 3 

E{Mi~) 

- 0 . 2 0 8 4 
- 0 . 3 3 3 9 
- 0 . 3 4 0 5 
- 0 . 3 6 2 1 

£ ( g a p ) 

- 0 . 0 7 7 8 
- 0 . 0 2 3 6 
- 0 . 0 1 9 5 
+0 .0008 

£ ( r i + ) 

- 0 . 6 4 9 9 
- 0 . 6 0 5 9 
- 0 . 5 9 8 0 
- 0 . 5 4 2 7 

E(Tz+) 

- 0 . 3 3 6 0 

E(U~) 

- 0 . 2 7 7 0 

spectively. Four significant figures in the energies have 
been given for purposes of illustration only. The last 
significant figure is uncertain so that we would con
clude that the Fermi energies are equal in both phases 
and equal to —0.372 Ry for a sphere radius of 3.931 a.u. 

The distortion of the Fermi surfaces for the two 
phases was found to be approximately 0.2 and from 
0.22 to 0.29%, respectively, for the cubic and hexag
onal phases. Within the accuracy of the band cal
culations these estimates of the distortions should 
probably be considered to be the same. For the cubic 
phase our value for the distortion may be compared 
with that of Heine and Abarenkov.13 Using a screened-

13 V. Heine and I. Abarenkov, Phil. Mag. 9, 451 (1964). 

ion pseudopotential they obtained a value for the dis
tortion between 0.10 and 0.45%. 

Our values for the effective masses of the two phases 
are regarded as equal and between 1.02 and 1.03 in 
value. These values are in reasonable agreement with 
those of Ham who obtained an effective mass equal 
to l.O.14 On the basis of our calculations a single effec
tive mass is to be expected from samples of sodium 
containing amounts of both phases of sodium. 

Table X I contains a comparison of our results for 
Ti, iVi, and N\ with those of Ham,14 Schlosser and 
Marcus,16 and Callaway.3 Agreement between the 
various authors is good but not perfect. Our value for 
the Fermi energy Ef is in good agreement with Ham's 
value. 

TABLE X. Distortion of the Fermi surface and approach of the 
Fermi vector to the zone boundaries for the hexagonal close-
packed structure. 

Axis (ka/2ir)f Distortion 
E n d kf/kend point 
point (%) 

2 
A 
T 

0.5523 
0.5535 
0.5519 

0.22 to 0.29% 
M 
A 
K 

95 
180 
83 

Our calculations have predicted a single effective 
mass for both phases of sodium. This prediction appears 
to be consistent with the cyclotron resonance work of 
Grimes and Kip10 who found a single isotropic effective 
mass of 1.24 for sodium. The specific-heat measure
ments of Martin,16 however, suggested that the effec
tive masses in the two phases are substantially differ
ent. His measurements indicate that the thermal effec
tive mass for the cubic phase of sodium is approxi
mately 20% greater than for the hexagonal phase. 
Taking the experimental value of 1.27 for the effective 
mass of a sample containing approximately equal 
amounts of the two phases, the thermal effective mass 
for the cubic phase might be as large as 1.4. 

TABLE XL Comparative energy values for Na at a few sym
metry points, from Ham, Schlosser and Marcus, Callaway and 
this paper. 

E 
(Ham)* 

(Schlosser and E E 
Marcus)b (Callaway)0 (This paper)d 

-0.6041 
-0.2910 
-0.3078 
-0.369 

-0.6067 
-0.2944 
-0.2938 

-0.5974 
-0 .263 
-0.316 

-0.60625 
-0.2758 
-0.3223 
-0.3724 

a F. S. Ham (Ref. 13). A lattice constant of 8.11 a.u. was used. 
b H. Schlosser and ^P. M, Marcus, Ref. 14. A lattice constant of 8.0427 

t.u. was used, 
• J . Callaway (Ref. 3). 
d A lattice constant equal to 7.984 a.u. was employed. 

14 F. S. Ham, Phys. Rev. 128, 82, 2524 (1962). 
15 H. Schlosser and P. M. Marcus, Phys. Rev. 131, 2529 (1963). 
16 D. L. Martin, Phys. Rev. 124, 438 (1961). 
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FIG. 2. Calculated energy bands along the 2, A, and T 
symmetry axes for hexagonal close-packed sodium. 

Hodgson17 has recently measured the optical con
stants of sodium in the wavelength range from 0.65 
to 2.5 fx. His infrared measurements indicate an optical 
mass of 1.08dz0.01. A somewhat lower value for the 
optical effective mass was given by Cohen18 who 
analyzed the data of Ives and Briggs19 and found 
w*op=1.01±0.02. 

Hodgson's results for the conductivity indicate an 
interband edge at about 1.2 eV which is probably an 
indirect transition. This is in reasonable agreement 
with our value 1.3 eV if the transition connects the 
Fermi surface with the symmetry point Ni. 

APPENDIX: FOURIER COEFFICIENTS 
OF THE POTENTIAL 

The crystal potential is taken to be a superposition 
of potentials 

V(r) = -2/r+Qe~Br/r, (Al) 

located at each atom site of the crystal. The potential 
is neutralized by a uniform charge distribution within 
the cellular polyhedron. The Fourier coefficients of the 
crystal potential can be determined taking full account 
of the symmetry of the cellular polyhedron most easily 
through a consideration of the charge distribution 
which produces the Coulombic portion of the crystal 
potential. 

By expanding both the potential and the charge 
distribution in terms of reciprocal lattice vectors and 
applying Poisson's equation, we obtain 

V (k) = - (87r/A^0k2) fp(r) e x p [ - ik • x~]dh, (A2) 

where the integral is over the crystal containing N 
cellular polyhedra of volume Oo. Since the charge dis
tribution p(r) has the symmetry of the lattice, (A2) 
may be written as 

7 ( k ) = (87r/Q0k
2) /p(r ) exp [ -A- r ]<Pr , (A3) 

where the integral is over one cellular polyhedron. 
17 J. N. Hodgson, Phys. Chem. Solids 24, 1213 (1963). 
18 M. H. Cohen, Phil. Mag. 3, 762 (1958). 
19 H. E. Ives and H. B. Briggs, J. Opt. Soc. Am. 27, 181 (1937). 

We next evaluate the Fourier coefficients of the 
potential for the body-centered cubic lattice. The first 
term in (Al) represents a lattice of point charges. 
Therefore inserting a delta function charge distribu
tion into (A3) we obtain for the Coulombic portion of 
the Fourier coefficients of the potential 

F(^)coui.= -8x/f i 0 k 2 . (A4) 

Because the second term in (Al) arises out of the or
thogonality requirement between valence and core-
electron wave functions rather than from an electro
static distribution of charge, we shall evaluate the 
Fourier coefficients for this term directly. Writing the 
potential as a sum over lattice sites 

^WreP = E ( ? e x p - . £ | r - r m | / | r - r w (A5) 

The Fourier coefficients for this term are then given by 

F ( k ) = ( e / M i „ ) £ [ e x p C - A - r ] 

m J 
XexY>-B\x-xm\/\x-rm\dh, (A6) 

where the integral is over all space and the sum is over 
all lattice sites. Integrating and performing the sum, 
we obtain for the repulsive portion 

F(k)reP=+47rQ/[O0(&
2+£2)]. (A7) 

The uniform charge distribution contributes only to 
the average potential 7(0) so that for &^0, the Fourier 
coefficients of the potential are 

7(k) = - (47r/120k2)[2- (Qk 2 /£ 2 +k 2 ) ] . (A8) 

The average potential V(0) will be considered 
separately. 

In evaluating the Fourier coefficients of the potential 
for the hexagonal structure, the above procedures are 
again applicable provided the integrations are taken 
over the double cellular polyhedron containing the 
two atoms of the basis. We obtain for the Fourier 
coefficients of the potential (for k^O) for the hexagonal 
structure 

F(k) = J [ e x p ( - i k . r 1 ) + e x p ( - * . r 1 ) ] F ( | k | ) , (A9) 

where 

7 ( | k | ) = - (4w/Qok%2-Qk2/(B2+k2)l. (A10) 

The reciprocal lattice vectors k here of course relate to 
hexagonal lattice. The radius vectors rx and r2 are 
from the origin to the two atoms of the basis. 

We next consider the average crystal potential F(0). 
The contribution due to the repulsive potential is ob
tained immediately from (A7). We shall consider the 
contribution arising from the uniform charge distribu
tion within the cellular polyhedron next since the 
point charges do not contribute to the average po-
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tential. Callaway and Glasser20 have given F(0) due 
to the uniform charge distribution for the cubic lattice, 
and we have calculated V(0) for the hexagonal lattice. 
The results are given below: 

F ( 0 ) h c p - - (47r/12o)0.06250ahcp
2, 

F(0)bcc= - (47r/12o)0.0495536abcc2, (All) 

where ahCP and abcc are the lattice constants for the 
20 J. Callaway and M. L. Glasser, Phys. Rev. 112, 73 (1958). 

I. INTRODUCTION 

IN this paper, we derive the Boltzmann equation for 
the phonon distribution only, in a crystal which 

is subject to a constant and small thermal disturbance 
such as a temperature gradient and in which phonons 
interact only with each other through a cubic anhar-
monic interaction. 

Within the framework of the approximation in which 
only the lowest order scattering process is retained, we 
can find that the Peierls integral equation1 for a phonon 
distribution is to be modified by correction terms. These 
terms are related to the spatial variation of the phonon 
distribution, so that they can be interpreted as renor-
malizing the phonon group velocity in the transport 
term of the Peierls equation. 

The derivation of the Boltzmann equation is carried 
out here by means of the Green's function method. 
Kadanoff and Baym2 have developed the Green's 
function approach to derive the Boltzmann equation 
for particle systems of either fermions or bosons subject 
to a mechanical disturbance. We proceeded initially 
along similar lines. In the particle case, there are certain 
difficulties concerning the choice of the boundary con
ditions for the Green's function defined in a real time 

* Work supported by the U. S. Atomic Energy Commission. 
f Permanent address: Department of Physics, Tohoku Uni

versity, Sendai, Japan. 
1 R. E. Peierls, Quantum Theory of Solids (Oxford University 

Press, Oxford, 1955). 
2 L. P. Kadanoff and G. Baym, Quantum Statistical Mechanics 

(W. A. Benjamin, Inc., New York, 1962). 

two lattices. Taking the atomic volumes to be the 
same in both the hexagonal and cubic phases and 
referring both results to the same lattice constant, we 
obtain a numerical comparison for V(0) for both 
phases. 

F(0)hcp= - (4x/Q0)0.0496063abcc
2, 

F(0)bcc= - (47r/O0)0.0495536abcc2. (A12) 

While F(0)hCp is slightly more binding than 7(0) bcc, 
the differences are quite small. 

domain. However, the thermodynamical Green's func
tion defined for imaginary times satisfies definite 
boundary conditions. Then, using the relationship be
tween the real-time and the imaginary-time Green's 
functions, and converting the equation of motion for the 
imaginary-time Green's function into that for the real
time Green's function, the Boltzmann equation for a 
particle distribution function results. Thus, the essen
tial part of this derivation of the Boltzmann equation 
appears to rest on the unique relationship between the 
real-time and the imaginary-time Green's functions; 
and this, in turn, is determined by the assumptions 
imposed on the asymptotic behavior of the system at 
the time t— — °o at which the mechanical disturbance 
was turned on adiabatically. 

On the other hand, in the present case of phonons, 
we have a rather different situation in several respects. 
First, in addition to the wave nature of phonons, the 
cubic anharmonic interactions do not conserve the 
number of phonons. Second, the external disturbance 
applied to the system is not a mechanical one. To cope 
with this situation, we have had to use arguments 
rather different from those used in the particle case. 

In Sec. II, we introduce a "nonequilibrium" phonon 
Green's function D, which is defined by the statistical 
average of the complex time correlation of "displace
ment" operators. This nonequilibrium phonon Green's 
function is different from the usual definition of a 
phonon Green's function in that no specific functional 
form is assumed for the density matrix specifying the 
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The Green's function approach is developed to derive the Boltzmann equation for a phonon system having 
cubic anharmonic interactions. Within the framework of the lowest order scattering process, it is found that 
the steady-state Boltzmann equation obtained is identical with the Peierls integral equation, except for 
small correction terms. These correction terms can be absorbed into the transport term by replacing the 
phonon group velocity appearing in the transport term by the renormalized one, including kinetic and dy
namical effects of collisions. Several remarks are made on the generalization of the Boltzmann equation. 


